1,204 research outputs found

    Phase transitions and thermodynamics of the two-dimensional Ising model on a distorted Kagom\'{e} lattice

    Full text link
    The two-dimensional Ising model on a distorted Kagom\'{e} lattice is studied by means of exact solutions and the tensor renormalisation group (TRG) method. The zero-field phase diagrams are obtained, where three phases such as ferromagnetic, ferrimagnetic and paramagnetic phases, along with the second-order phase transitions, have been identified. The TRG results are quite accurate and reliable in comparison to the exact solutions. In a magnetic field, the magnetization (mm), susceptibility and specific heat are studied by the TRG algorithm, where the m=1/3m=1/3 plateaux are observed in the magnetization curves for some couplings. The experimental data of susceptibility for the complex Co(N3_3)2_2(bpg)⋅\cdot DMF4/3_{4/3} are fitted with the TRG results, giving the couplings of the complex J=22KJ=22K and J′=33KJ'=33K

    Emergent spin-1 trimerized valence bond crystal in the spin-1/2 Heisenberg model on the star lattice

    Full text link
    We explore the frustrated spin-1/21/2 Heisenberg model on the star lattice with antiferromagnetic (AF) couplings inside each triangle and ferromagnetic (FM) inter-triangle couplings (Je<0J_e<0), and calculate its magnetic and thermodynamic properties. We show that the FM couplings do not sabotage the magnetic disordering of the ground state due to the frustration from the AF interactions inside each triangle, but trigger a fully gapped inversion-symmetry-breaking trimerized valence bond crystal (TVBC) with emergent spin-1 degrees of freedom. We discover that with strengthening JeJ_e, the system scales exponentially, either with or without a magnetic field hh: the order parameter, the five critical fields that separate the JeJ_e-hh ground-state phase diagram into six phases, and the excitation gap obtained by low-temperature specific heat, all depend exponentially on JeJ_e. We calculate the temperature dependence of the specific heat, which can be directly compared with future experiments.Comment: 7 pages, 6 figure

    Linearized Tensor Renormalization Group Algorithm for Thermodynamics of Quantum Lattice Models

    Full text link
    A linearized tensor renormalization group (LTRG) algorithm is proposed to calculate the thermodynamic properties of one-dimensional quantum lattice models, that is incorporated with the infinite time-evolving block decimation technique, and allows for treating directly the two-dimensional transfer-matrix tensor network. To illustrate its feasibility, the thermodynamic quantities of the quantum XY spin chain are calculated accurately by the LTRG, and the precision is shown to be comparable with (even better than) the transfer matrix renormalization group (TMRG) method. Unlike the TMRG scheme that can only deal with the infinite chains, the present LTRG algorithm could treat both finite and infinite systems, and may be readily extended to boson and fermion quantum lattice models.Comment: published versio

    Combining regenerated gratings and optical fibre Fabry-Pérot cavities for dual sensing of ultra-high temperature and strain

    Full text link
    © 2015 Copyright SPIE. The successful regeneration of fibre Bragg gratings (FBGs) inscribed in an inline fibre etalon is demonstrated. The etalon is formed by UV-micromaching of the fibre end-face to form a cylindrical hole, the fibre is then fusion spliced to seal the cavity. Such a fibre device has excellent potential for the simultaneous measurement of ultra-high temperatures and strain

    Implementation of an integrated continuous downstream process for a monoclonal antibody production

    Get PDF
    The biopharmaceutical market is driving the revolution from batch to continuous manufacturing (CM) for higher productivity and lower cost. In this work, a bench-scale fully integrated continuous downstream process for monoclonal antibody production was established and successfully scaled up to 200 L scale. The process includes a continuous proteinA step, a viral inactivation step, a batch-wise cation exchange and anion exchange step, a batch-wise viral-filtration step, and a single-pass UF/DF step. An inline protein quantity monitoring system was designed to control protein loading mass on cation exchange column. All the steps were connected through surge tanks and integrated by DeltaVTM automatic control system. Please download the PDF file for full content

    SMART: A Situation Model for Algebra Story Problems via Attributed Grammar

    Full text link
    Solving algebra story problems remains a challenging task in artificial intelligence, which requires a detailed understanding of real-world situations and a strong mathematical reasoning capability. Previous neural solvers of math word problems directly translate problem texts into equations, lacking an explicit interpretation of the situations, and often fail to handle more sophisticated situations. To address such limits of neural solvers, we introduce the concept of a \emph{situation model}, which originates from psychology studies to represent the mental states of humans in problem-solving, and propose \emph{SMART}, which adopts attributed grammar as the representation of situation models for algebra story problems. Specifically, we first train an information extraction module to extract nodes, attributes, and relations from problem texts and then generate a parse graph based on a pre-defined attributed grammar. An iterative learning strategy is also proposed to improve the performance of SMART further. To rigorously study this task, we carefully curate a new dataset named \emph{ASP6.6k}. Experimental results on ASP6.6k show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability. To test these models' generalization capability, we also design an out-of-distribution (OOD) evaluation, in which problems are more complex than those in the training set. Our model exceeds state-of-the-art models by 17\% in the OOD evaluation, demonstrating its superior generalization ability

    LEMMA: Learning Language-Conditioned Multi-Robot Manipulation

    Full text link
    Complex manipulation tasks often require robots with complementary capabilities to collaborate. We introduce a benchmark for LanguagE-Conditioned Multi-robot MAnipulation (LEMMA) focused on task allocation and long-horizon object manipulation based on human language instructions in a tabletop setting. LEMMA features 8 types of procedurally generated tasks with varying degree of complexity, some of which require the robots to use tools and pass tools to each other. For each task, we provide 800 expert demonstrations and human instructions for training and evaluations. LEMMA poses greater challenges compared to existing benchmarks, as it requires the system to identify each manipulator's limitations and assign sub-tasks accordingly while also handling strong temporal dependencies in each task. To address these challenges, we propose a modular hierarchical planning approach as a baseline. Our results highlight the potential of LEMMA for developing future language-conditioned multi-robot systems.Comment: 8 pages, 3 figure
    • …
    corecore